

Kinetik

Prof. Dr. h.c. Thomas M. Klapötke

21. & 22. Oktober 2025

Anorganische Experimentalchemie

Chemieunterricht verstehen!

Zur Didaktik und Mathetik der Chemie (überarbeitet)

Michael A. Anton

Wien/München 2025 Eigenverlag Alle Rechte beim Verfasser

ppt – Vorlesungs-Folien

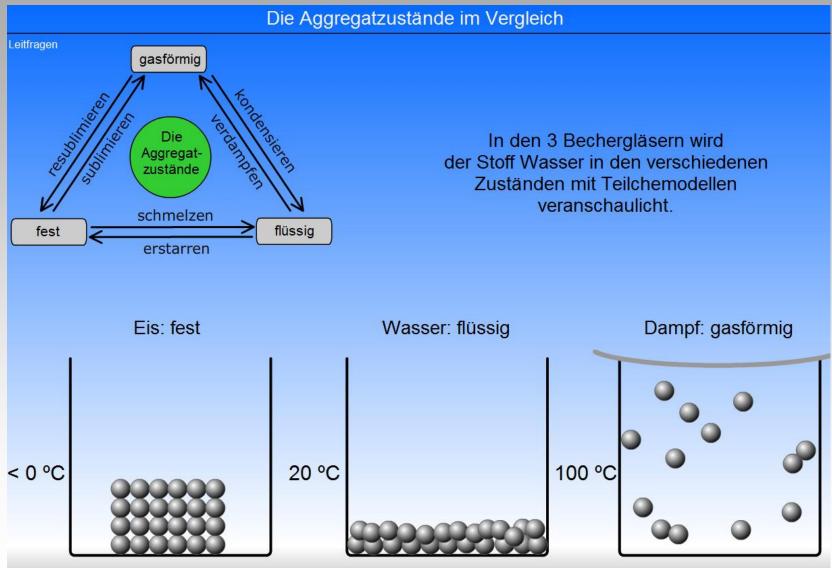
→ https://acvorl.cup.uni-muenchen.de

→ Anorganische Experimentalchemie (AC-1)

→ username: acvorl

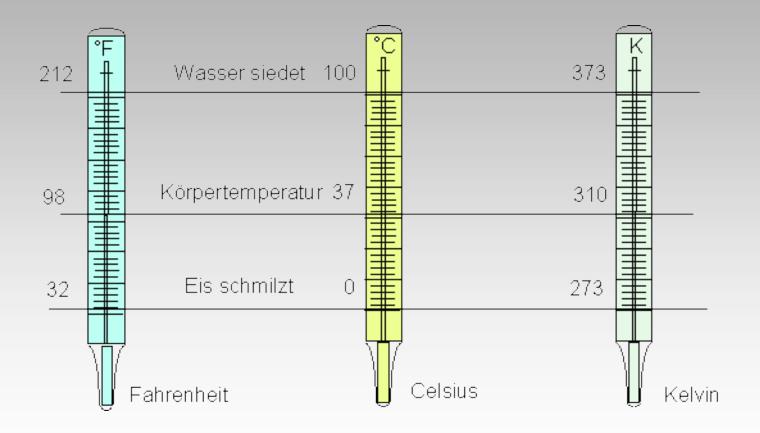
password: fim!rim05

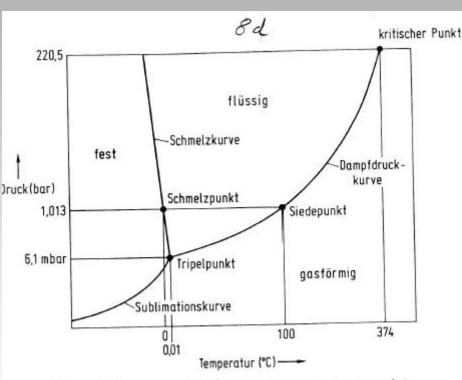
Wiederholung


- 1. Stöchiometrische Gesetze
 - z.B. Massenerhaltungsgesetz
- 2. Zustandsgleichung des idealen Gases

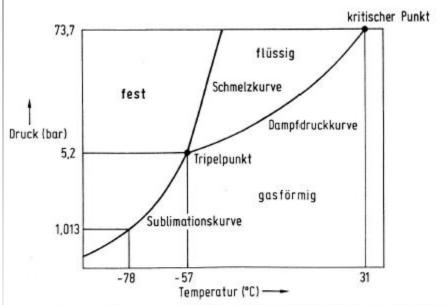
$$pV = nRT$$

3. Temperaturabhängigkeit des chemischen Gleichgewichts

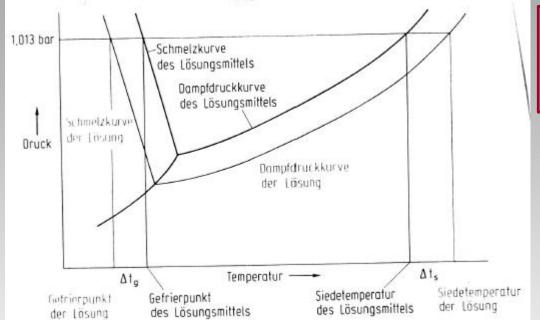

$$\ln \frac{K_p(T_2)}{K_p(T_1)} = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \qquad \text{Van't Hoffsche} \\ \text{Reaktions-Isobare}$$



Temperaturskalen



Phasendiagramme


Zustandsdiagramm von Wasser (nicht maßstabsgerecht).

Zustandsdiagramm von Kohlenstoffdioxid (nicht maßstabsgerecht).

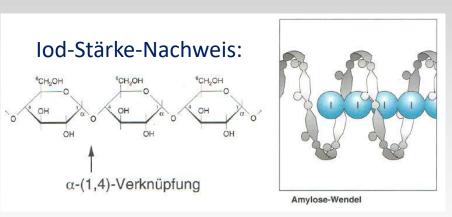
$$P + F = K + 2$$

Gefrierpunktserniedrigung $\Delta t_g = E_g b$ Siedepunktserhöhung $\Delta t_s = E_s b$

Bei einer Lösung ist der Sättigungsdampfdruck des Lösungs-mittels niedriger als bei einem reinen Lösungsmittel. Dies hat eine Siedepunktserhöhung Δt_s , und eine Gefrierpunktserniedrigung Δt_g der Lösung zur Folge.

	$E_{\rm s}$ in K kg mol ⁻¹	$E_{\rm g}$ in K kg mol ⁻¹
Wasser	0,51	-1,86
Ethanol	1,21	-1,99
Essigsäure	3,07	-3,90
Ammoniak	0,34	-1,32

Begriff: kolligative Eigenschaften (nur von der Anzahl abhängig)


Landolt-Reaktion

I.
$$3 SO_3^{2-} + IO_3^{-} \longrightarrow I^{-} + 3 SO_4^{2-}$$

II.
$$5 I^{-} + 10_{3}^{-} + 6 H^{+} \longrightarrow 3 I_{2} + 3 H_{2}O$$

III.
$$I_2 + SO_3^{2-} + H_2O \longrightarrow SO_4^{2-} + 2H^+ + 2I^-$$

Versuch:

Reaktionsgeschwindigkeit hängt von der Temperatur und der Konzentration ab!

Faustregel: Eine Temperaturerhöhung um 10°C bewirkt eine Verdopplung der Reaktionsgeschwindigkeit.

Kinetik vs. Thermodynamik

Die Thermodynamik gibt die Richtung an, in der eine gegebene Reaktion ablaufen kann; weiterhin gibt sie die Lage des Gleichgewichts an.

Die Reaktionskinetik beschäftigt sich mit Geschwindigkeit und Mechanismus des Ablaufes einer Reaktion.

Die Reaktionskinetik umfasst die Teilgebiete:

- 1. Die Reaktionsgeschwindigkeit
- 2. Die Konzentrationsabhängigkeit der Reaktionsgeschwindigkeit
- 3. Die Formulierung entsprechender Geschwindigkeitsgesetze
- 4. Die Formulierung einer Hypothese über den detaillierten Ablauf, d.h. den Reaktionsmechanismus
- 5. Die Temperaturabhängigkeit der Reaktionsgeschwindigkeit
- 6. Der Einfluss anderer Stoffe auf die RG: Katalyse und Inhibition

Kinetik

Stöchiometrische Reaktionsgleichung (allgemeine Form):

$$aA + bB + ... \longrightarrow mM + nN + ...$$

A, B = Ausgangsstoffe (Edukte) M, N = Endstoffe (Produkte)
a, b = stöchiometrische Koeffizienten m, n = stöchiometrische
der Ausgangsstoffe Koeffizienten der Endstoffe

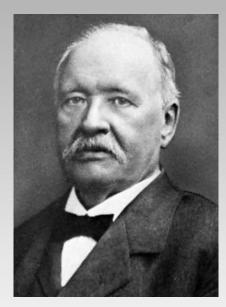
$$r = k [A]^{n_a} [B]^{n_b} = \frac{1}{\omega_i} \frac{dc_i}{dt}$$

$$r = -\frac{1}{a} \frac{dc_A}{dt} = \frac{1}{m} \frac{dc_{iM}}{dt} = \cdots$$

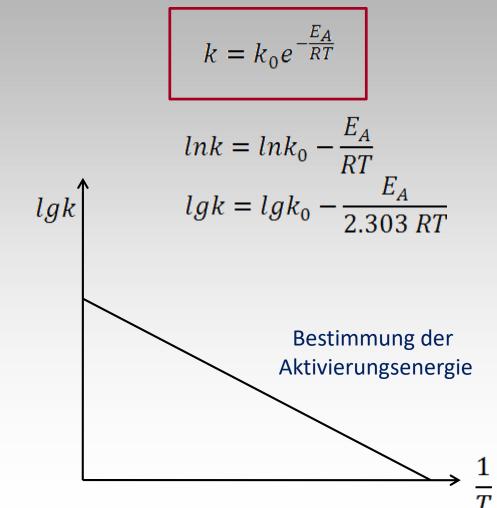
Molekularität: Anzahl der Teilchen, deren gleichzeitiger Stoß

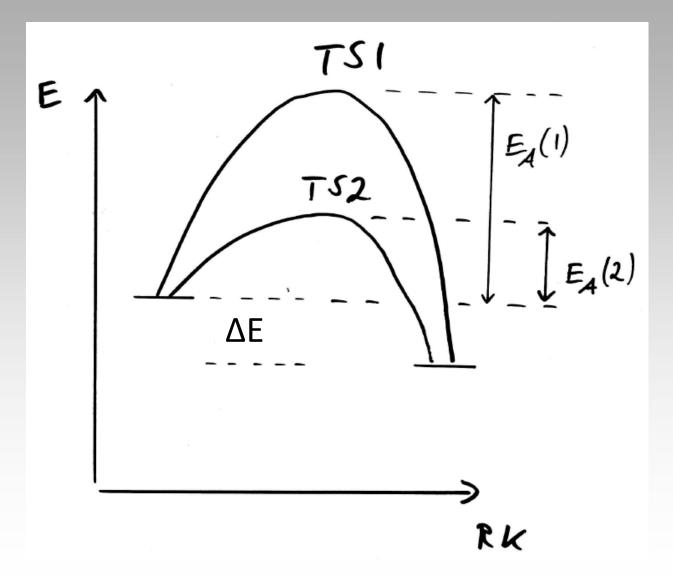
zu einer chem. Rk. führt

(Mechanismus)


Rk-Ordnung: Summe der Exponenten, mit denen die

Konzentrationen in das Zeitgesetz eingehen


(empirisch)


Arrhenius Gleichung

Svante Arrhenius (1859-1927)

Reaktionen 0. Ordnung

Bei Reaktionen O. Ordnung ist die Reaktionsgeschwindigkeit unabhängig von der Konzentration der Reaktanden. Die Reaktionsgeschwindigkeit ist konstant.

Beispiele:

- Alkoholabbau im menschlichen Körper
- Photochemische Reaktionen
- Katalyse

$$v = -\frac{\Delta C_{\rm A}(t)}{\Delta t} = k$$

Reaktionen 1. Ordnung

Bei Reaktionen 1. Ordnung ist die Reaktionsgeschwindigkeit zum Zeitpunkt t proportional der Konzentration eines Reaktionspartners zum Zeitpunkt t.

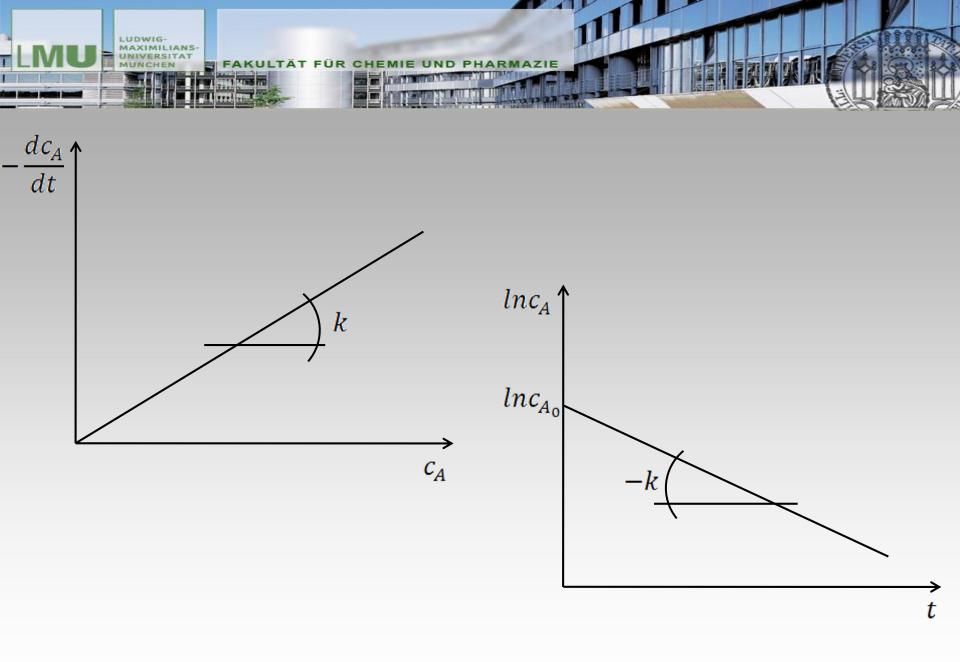
Beispiel:

radioaktiver Zerfall: A → B + C

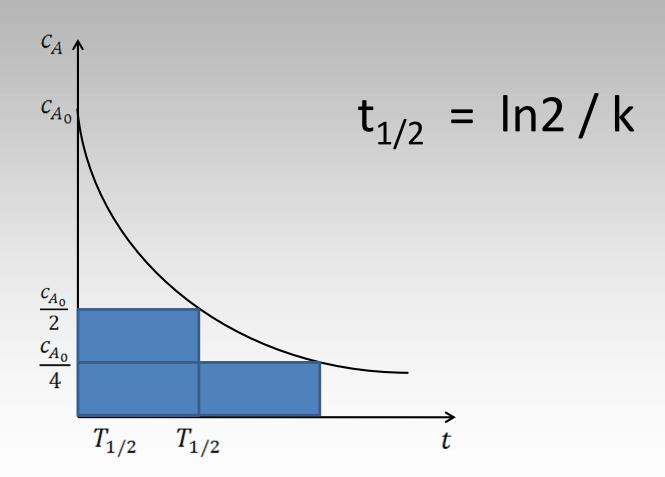
Reaktionen 1. Ordnung

Für den Fall, daß ein Stoff "A" in einer Reaktion 1. Ordnung (bezüglich c_A) verbraucht wird, z.B. entsprechend der folgenden stöchiometrischen Gleichung:

$$r = -\frac{d c_A}{d t} = k \cdot c_A$$


Integration:

$$\frac{\mathrm{d}\,c_A}{c_A} \ = \ \mathrm{d}\,\ln c_A \ = \ -\,k\cdot\mathrm{d}\,t$$

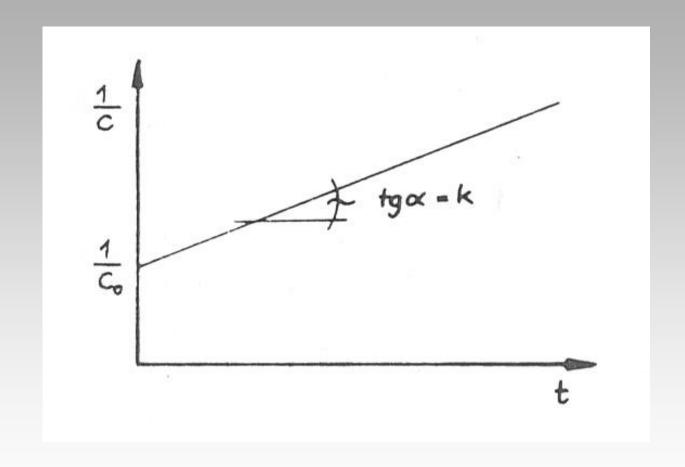

$$\int_{\ln c_{A}(t=0)}^{\ln c_{A}(t)} d \ln c_{A} = -k \cdot \int_{t=0}^{t} dt$$

$$\ln c_A(t) - \ln c_A(t=0) = -k \cdot t$$

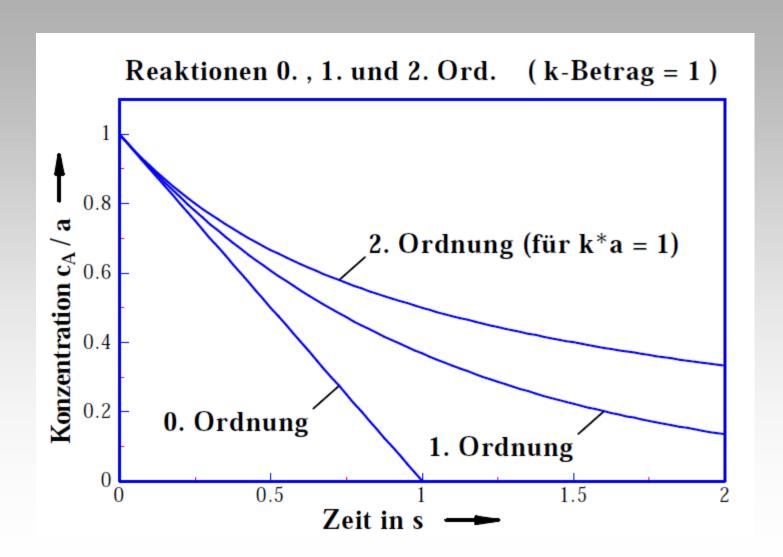
Abkürzung
$$c_A (t = 0) = a \rightarrow \ln c_A (t) = \ln a - k \cdot t$$

Reaktionen 2. Ordnung

Beispiele:


- 2 HI → I₂+ H₂
- R-COOR' + OH⁻ → R-COO⁻ + R'-OH
- 2 A → B + ...

$$r(A) = \frac{dc_A}{dt} = -kc^2(A)$$


$$\tau_{1/2} = \frac{1}{k c_0}$$

$$^{\mathsf{T}}1/2 = \frac{1}{\mathbf{k} \, \mathbf{c}_{\mathsf{o}}}$$

Ordnung der Reaktion	Dimension der Geschwindigkeitskonstante	Halbwertszeit
0. Ordnung	mol 1 ⁻¹ s ⁻¹	$\tau = \frac{c_{A_0}}{2 \cdot k}$
1. Ordnung	s ⁻¹	$\tau = \frac{0,693}{k}$
2. Ordnung	1 mol ⁻¹ s ⁻¹	$\tau = \frac{1}{c_{A_o} \cdot k}$
3. Ordnung	1 ² mol ⁻² s ⁻¹	$\tau = \frac{3}{2 \cdot c_{A_o}^2 \cdot k}$
n – ter Ordnung	1 ⁽ⁿ⁻¹⁾ mol ⁻⁽ⁿ⁻¹⁾ s ⁻¹	$\tau = \frac{2^{n-1} - 1}{(n-1) \cdot c_{A_0}^{n-1} \cdot k}$

Vorgelagertes Gleichgewicht:

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

exp. Befund:
$$-\frac{d[NO]}{dt} = k \cdot [NO]^2 [O_2]$$

Die Reaktionsordnung ist also = 3, wie nach der Reaktionsgleichung zu erwarten war: Allerdings nimmt das k hier mit steigender Temperatur ab.

Erklärung: Wir haben hier keine trimolekulare Reaktion sondern eine Reaktion mit vorgelagertem Gleichgewicht.

$$K = \frac{\left[N_2 O_2\right]}{\left[NO\right]^2} - - - \left[N_2 O_2\right] = K \left[NO\right]^2$$

$$-\frac{d[NO]}{dt} = \frac{d[NO_2]}{dt} = 2 [N_2O_2][O_2] . k_3$$

$$= \underbrace{2 \text{ K} \cdot \text{k}_{3}}_{\text{k'}} \left[\text{NO} \right]^{2} \left[\text{O}_{2} \right]$$

Der negative Temperaturkoeffizient von k erklärt sich nun daraus, daß K mit steigender Temperatur stärker abnimmt als k_3 zunimmt.

Hydrolyse von Sarinlösungen (10⁻³ M) bei verschiedenen pH-Werten (Temperatur: 25 ± 5°C)

Hydrolyse	Hydrolysezeit in min					
	pH 1	pH 3	рН 5 6	pH 9,5	pH 11,5	
1 % 99 %	2 100	15 6000	120 10 ⁵	0,14 66	0,003 1,3	

Hydrolyse von Sarinlösungen (10⁻³ M) bei verschiedenen pH-Werten

Hydrolyse	Hydrolysezeit in min				
	pH 1	pH 3	pH 56	pH 9.5	pH 11.5
1%	2	15	120	0.14	0.003
99 %	100	6000	10 ⁵	66	1.3

Anorganische Experimentalchemie (Tag 5)

H₃C

HO

H₃C

OCI

Reversible Reaktionen

Chromat-Gleichgewicht:

$$Cr_2O_7^{2-} + H_2O$$

Stickstoffdioxid-Gleichgewicht:

Versuch:

$$N_2O_4$$
 $\Delta H_{298} = 62 \text{ kJ/mol}$ farblos braun

1. Bei -10 °C: fest

2. Bei -10 °C: 0 % NO₂

3. Bei +50 °C: 40 % NO₂

4. Bei +135 °C: 99 % NO₂

m.p. -11°C

b.p. 21°C

Autokatalyse:

$$COCl_2 \rightarrow CO + Cl_2$$

Aus dem Experiment ergibt sich aber:

$$-\frac{d\left[\cos c_{1}\right]}{dt} = k \cdot \left[\cos c_{1}\right] \left[c_{1}\right]^{1/2}$$

Die Ursache für diese Abweichung ist eine autokatalytische Wirkung des bei der Reaktion entstehenden Cl₂ durch eine Kettenreaktion:

$$C1_{2} \Longrightarrow 2 C1$$

$$K = \frac{[C1]^{2}}{[C1_{2}]} ; C1 = \sqrt{K} \cdot [C1_{2}]^{1/2}$$

$$O = C < \frac{Cl}{Cl} + Cl \xrightarrow{long sam} O = C \cdot Cl + Cl_{2}$$

$$schnell$$

$$CO + Cl \longrightarrow 2 Cl$$

Beispiel für die Diskrepanz zwischen Reaktionsgleichung und Zeitgesetz:

Für die Umwandlung des Ozons in normalen Sauerstoff erwartet man

$$\frac{-dc_{0}}{dt} = k \cdot c_{0}^{2}$$

experimentell gefunden wurde aber:

$$\frac{- dc_{0_{3}}}{dt} = k' \frac{c_{0_{3}}^{2}}{c_{0_{2}}}$$

Dieses Zeitgesetz kann durch folgenden <u>Reaktionsmechanismus</u> erklärt werden (Reaktionsmechanismus = Reihenfolge und Zusammenwirken aller Teilprozesse, die auf das Zeitgesetz einen Einfluß haben):

$$o_3 = \frac{k_1}{k_2}$$
 $o_2 + 0; \quad 0 + o_3 + 2 o_2$

$$\frac{k_1}{k_2} = \frac{c_0}{c_0} \cdot \frac{c_0}{3}$$

$$\frac{- dc_{0}}{dt} = k_{3} \cdot c_{0} \cdot c_{03}$$

$$-\frac{dc_{0}}{3} = k_{3} \cdot \frac{k_{1}}{k_{2}} \cdot \frac{c_{0}^{2}}{c_{0}} = k' \cdot \frac{c_{0}^{2}}{c_{0}}$$

Flamme TATP 2.avi