

Kernchemie

Prof. Dr. h.c. Thomas M. Klapötke

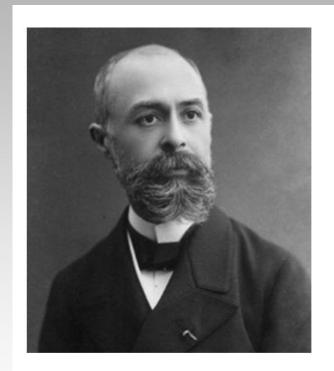
31. Oktober 2025

Anorganische Experimentalchemie

Recommended Format for the Periodic Table of the Elements

Relativity and the Periodic Table: a summary.

Literatur: K. S. Pitzer, *Acc. Chem. Res.* **1979**, *12(8)*, 271 – 276.


C. W. Haigh, J. Chem Educ. 1995, 72(3), 206 – 210.

P. Pyykkö, *Chem. Rev.* **1988**, *88*, 563 – 594.

T. M. Klapötke, I. C. Tornieporth-Oetting, Nichtmetallchemie, VCH, Weinheim, **1994**, 71 – 77.

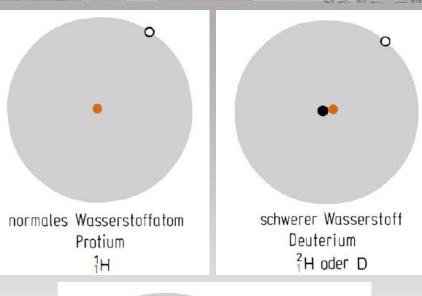
Pioniere der radioaktiven Strahlung:



Henry Bequerel (links), Marie Curie (mitte) und Ernest Rutherford (rechts).

Rutherford'scher Streuversuch

Rutherford'scher Streuversuch


Der englische Physiker Lord Ernest Rutherford beschoss 1910/11 eine sehr dünne Goldfolie mit alpha-Strahlen aus einem radioaktiven Präparat. Es stellte sich ein erstaunliches Ergebnis heraus: Nur ganz wenige alpha-Teilchen wurden abgelenkt oder reflektiert. Der größte Teil der alpha-Teilchen passierte die ca. 2.000-4.000 Atome dicke Goldfolie so, als sei überhaupt kein Hindernis vorhanden.

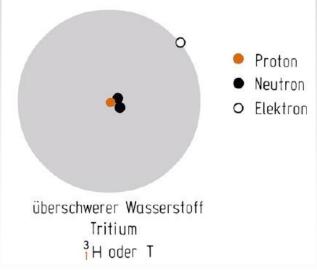

Aus den Ergebnissen dieses Versuches schlussfolgerte Rutherford, dass das Atom aus einem positiv geladenen Kern, der nahezu die gesamte Masse des Atoms in sich vereinigt, und einer fast massefreien Hülle bestehen muss. Nur die wenigen alpha-Teilchen, die in die Nähe des Kerns gelangten, wurden abgelenkt oder reflektiert. Während der Radius eines Atoms bei ca. 10⁻¹⁰ liegt, beträgt der des Atomkerns lediglich etwa 10⁻¹⁵ m. Der Radius des Atomkerns ist also etwa 100.000-mal kleiner als der des gesamten Atoms.

Tabelle 1.2 Nuklide der ersten zehn Element

Ord- nungs- zahl = Kern- ladungs- zahl	Element	Nuklid- symbol	Pro- tonen- bzw. Elek- tronen- zahl	Neu- tro- nen- zahl	Nukle- onen- zahl	Nuklid- masse in u	Atomzahl- anteil in %	Mittlere Atom- masse in u
1	Wasserstoff	¹H	1	0	1	1,007825	99,985	1,0080
\$F	Н	² H	1	1	2	2,01410	0,015	
		³ H	1	2	3		Spuren	
2	Helium	³ He	2	1	3	3,01603	0,00013	4,0026
	He	⁴ He	2	2	4	4,00260	99,99987	
3	Lithium	⁶ Li	3	3	6	6,01512	7,42	6,941
	Li	⁷ Li	3	4	7	7,01600	92,58	
4	Beryllium Be	⁹ Be	4	5	9	9,01218	100,0	9,01218
5	Bor	10B	5	5	10	10,01294	19,78	10,81
930 	В	11B	5	6	11	11,00931	80,22	
6	Kohlenstoff	12C	6	6	12	12,00000	98,89	12,011
	C	13C	6	7	13	13,00335	1,11	
		14C	6	8	14		Spuren	
7	Stickstoff	14N	7	7	14	14,00307	99,63	14,0067
	N	15N	7	8	15	15,00011	0,36	
8	Sauerstoff	¹⁶ O	8	8	16	15,99491	99,759	15,9994
	0	17O	8	9	17	16,99913	0,037	
		18O	8	10	18	17,99916	0,204	
9	Fluor F	¹⁹ F	9	10	19	18,99840	100	18,9984
10	Neon	²⁰ Ne	10	10	20	19,99244	90,92	20,179
	Ne	21Ne	10	11	21	20,99395	0,26	
		²² Ne	10	12	22	21,99138	8,82	

Atomarten (Isotope) des Wasserstoffs

Der Zahlenwert der mittleren Atommasse in u ist gleich der relativen Atommasse A_r .

3.11.2010

Tab. 5 Atombausteine, -kerne und -hüllen $(Z = \text{Kernladung}, m = \text{Massenzahl}, A_r = \text{relative Atommasse}, N_A = \text{Avogadrosche Konstante}^{al})$

Teilchen	Ma		Ladung		Radius ^{b1}	Dichte
	relativ (12C = 12)	absolut [kg]	[in Coulomb]	[in e]	[ca., in m]	[ca., in g/cm ³]
Elektron	0.000 548 580	9.109534 × 10 ⁻³¹	$-1.602189 \times 10^{-19}$	-1	< 10 ⁻¹⁹	≥ 1014
u-Quark	0.322	0.535 × 10 ⁻²⁷	+1.068126 × 10-19	1	< 10-19	≥ 10 ¹⁴
d-Quark	0.322	0.535 × 10 ⁻²⁷	$-0.534063 \times 10^{-19}$		< 10 ⁻¹⁹	≥ 1014
Proton	1.007276°)	1.672649 × 10 ⁻²⁷	+1.602189 × 10 ⁻¹⁹	+1	1.3 × 10 ⁻¹⁵	2 × 1014
Neutron	1.008 665°)	1.674954 × 10 ⁻²⁷	±0	±0	1.3 × 10 ⁻¹⁵	2 × 1014
Atomkern	A, - Z/1836	$(A_r - Z/1836): N_A$	+1.6×10 ⁻¹⁹ ×Z	+Z	$1.3 \times 10^{-15} \times \sqrt[3]{m}$	2 × 10 ¹⁴
Atomhülle	Z/1836	(Z/1836): N _A	$-1.6 \times 10^{-19} \times Z$	-z	um 2 × 10 ⁻¹⁰	2×10-4×Z

a) $N_A = 6.022045 \times 10^{23} \text{ mol}^{-1}$. b) Plancksche Elementarlänge = $1.617 \times 10^{-35} \text{m}$. c) Ein Proton ist 1836.151mal, em Neutron 1838.683mal schwerer als ein Elektron.

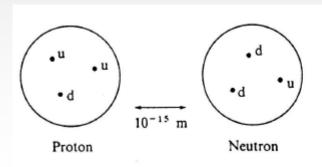
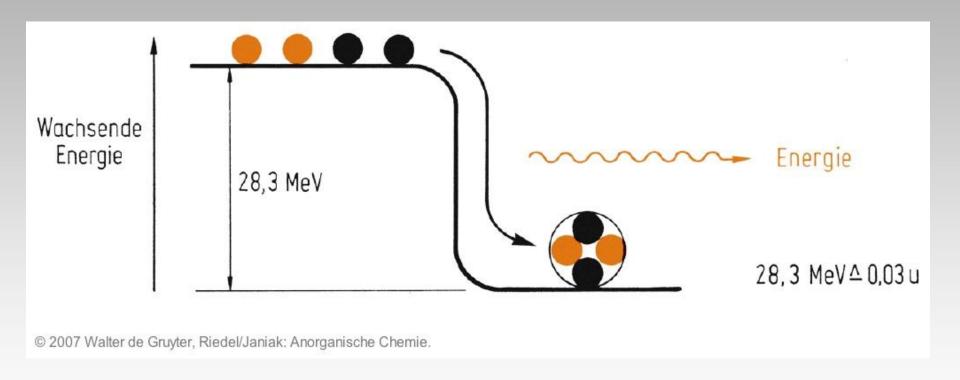


Fig. 33 Aufbau von Proton und Neutron aus Quarks.

$$1u = \frac{1}{12}m(^{12}_{6}C)$$

Element AX


Nuklid ^AZX

Isotop AX, AX

Isobar ${}_{Z}^{A}X, {}_{Z}^{A}Y$

Massendefekt

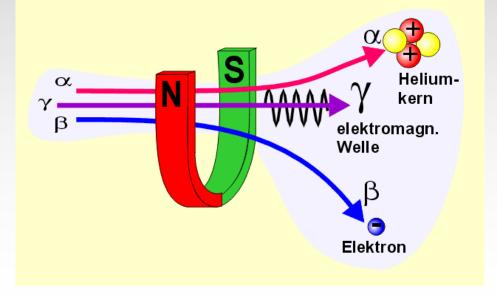
Radioaktive Strahlung

$$\alpha$$
: ${}_{2}^{4}$ He

$$\beta^-: {}_0^1 n \rightarrow {}_1^1 p + {}_{-1}^0 e^- + {}_0^- \nu$$

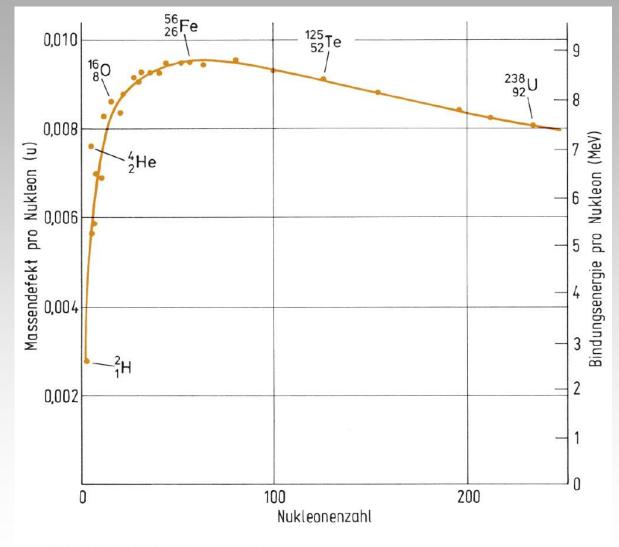
$$\beta^+$$
: ${}^1_1p \rightarrow {}^1_0n + {}^0_1e^+ + {}^0_0v$

$$K: {}^1_1p \ + \ {}^0_{-1}e^- \ \to \ {}^1_0n \ + \ {}^0_0\nu$$


y: hv

$$^{238}_{92}U \xrightarrow{\alpha} ^{234}_{90}Th^{2-} \rightarrow$$

$$^{227}_{89}\text{Ac} \xrightarrow{\beta^{-}} ^{227}_{90}\text{Th}^{+}$$


$$^{18}\text{F} \xrightarrow{\beta^+} ^{18}\text{O}$$

$$^{40}_{19}\text{K} \xrightarrow{\text{K}} ^{40}_{18}\text{Ar}$$

Kernumwandlung Teilchen der Strahlung Bezeichnung der Strahlung dungszahl nenzahl Nukleonen fähigkeit AE He-Kerne α-Strahlung +2 4 gering AE A-4 Z-2E Θ Elektronen (elektromagnet. Wellen) γ-Strahlung -1 0 mittel Mukleonen (and Strahlung) γ-Strahlung -1 0 mittel Mukleonen (elektromagnet. Wellen) γ-Strahlung 0 0 groß	Kernumwandlung	Tailchan	The same of the sa			
Photonen (elektromagnet. Wellen) A - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			Bezeichnung der Strahlung	Kernla- dungszahl	Nukleo- nenzahl	Durchdringungs- fähigkeit
A-4 E Description Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen)		He-Kerne	∝- Strahlung	+2	4	gering
Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Y - Strahlung 0 0 groß	_	A-4 Z-2E				
Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen) 7 - Strahlung 0 0 groß		→ ⊖ Elektronen	β - Strahlung	-1	0	mittel
Photonen (elektromagnet. Wellen) Photonen (elektromagnet. Wellen) 7 - Strahlung 0 0 groß	ÅE.					
(elektromagnet. Wellen) A E Kern im angeregten Zustand A E						
Zustand AE	~~	(elektromagnet.	γ - Strahlung	0	0	groß
Zustand AE	ÅE					
ī.E	Kern im angeregten					
Kern im Grundzustand		T1				
	Kerr	im Grundzustand		1		

© 2007 Walter de Gruyter, Riedel/Janiak: Anorganische Chemie.

Tabelle 1.3 Radioaktive Zerfallsreihen

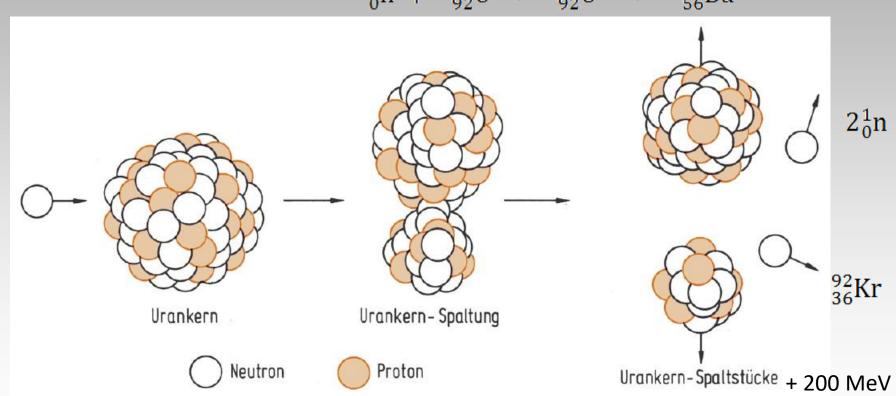
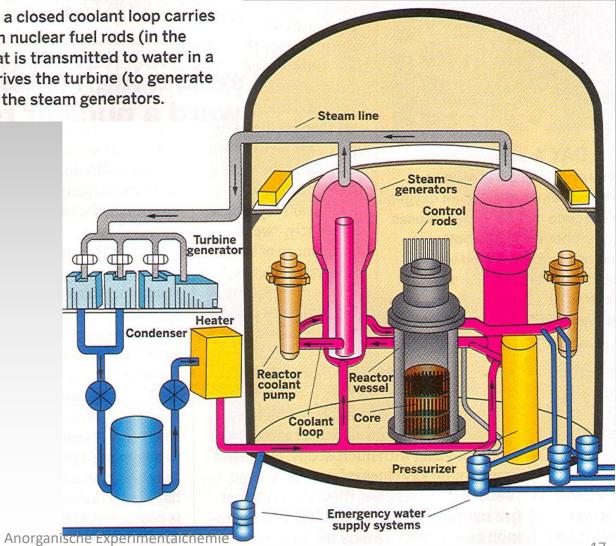
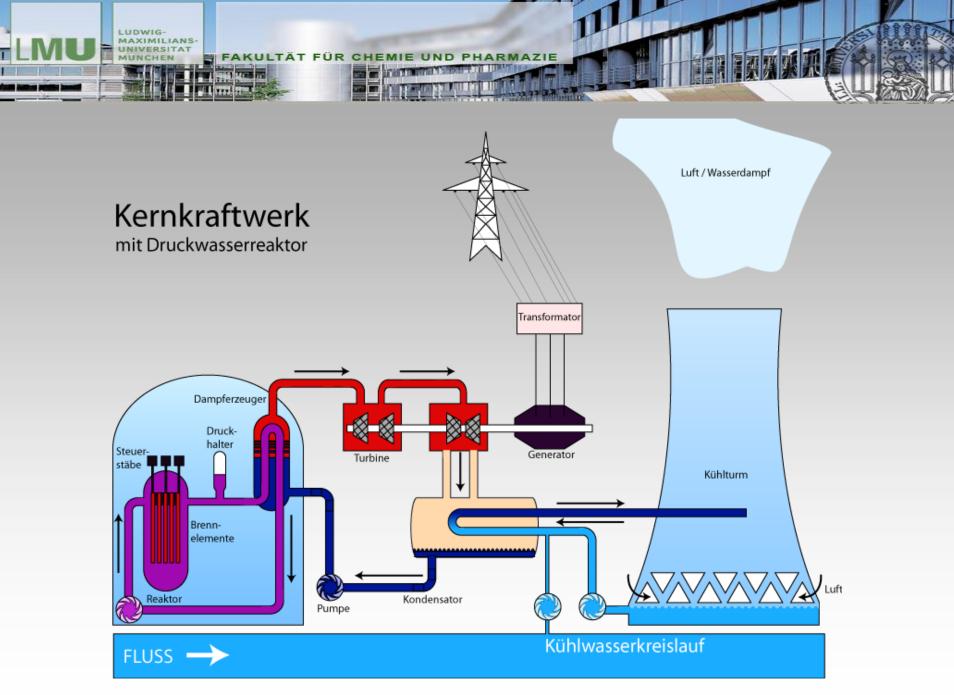

Zerfallsreihe	Nukleonen- zahlen	Ausgangs- nuklid	Stabiles Endprodukt	Abgegebene α	Teilchen β
Thoriumreihe	4n	²³² Th	²⁰⁸ ₈₂ Pb	6	4
Neptuniumreihe	4n + 1	²³⁷ ₉₃ Np	²⁰⁹ ₈₃ Bi	7	4
Uran-Radium-Reihe	4n + 2	²³⁸ U	²⁰⁶ ₈₂ Pb	8	6
Actinium-Uran-Reihe	4n + 3	²³⁵ ₉₂ U	²⁰⁷ ₈₂ Pb	7	4

Tabelle 1.4	Uran-Radium-Zerfallsreihe						
Nuklid	Halbwertszeit $t_{1/2}$	Nuklid	Halbwertszeit $t_{1/2}$	Nuklid	Halbwertszeit $t_{1/2}$		
²³⁸ ₉₂ U	4,51 · 10 ⁹ Jahre	²²⁶ ₈₈ Ra	1600 Jahre	²¹⁴ ₈₄ Po	$1,64 \cdot 10^{-4}$ Sekunden		
²³⁴ Th	24,1 Tage	²²² ₈₆ Rn	3,83 Tage	² 10 ₈₂ Pb	21 Jahre		
²³⁴ Pa	1,17 Minuten	²¹⁸ ₈₄ Po	3,05 Minuten	²¹⁰ ₈₃ Bi	5,01 Tage		
234U	2,47 · 105 Jahre	² 14 ₈₂ Pb	26,8 Minuten	² 10 ₈₄ Po	138,4 Tage		
²³⁰ ₉₀ Th	8,0 · 10 ⁴ Jahre	² 14/83Bi	19,7 Minuten	²⁰⁶ ₈₂ Pb	stabil		

Kernspaltung von ²³⁵Uran


$$^{1}_{0}$$
n + $^{235}_{92}$ U \rightarrow $^{236}_{92}$ U* \rightarrow $^{142}_{56}$ Ba


© 2007 Walter de Gruyter, Riedel/Janiak: Anorganische Chemie.

UNDER PRESSURE Pressurized water in a closed coolant loop carries intense heat generated by fission reactions in nuclear fuel rods (in the reactor core) to steam generators. There, heat is transmitted to water in a separate closed loop to form steam, which drives the turbine (to generate electricity), cools, condenses, and returns to the steam generators.

3.11.2010

Temelin | 11.11.2019 | 12:45 Uhr

Panne im tschechischen AKW Temelin - Turbine vibriert

Lesenswert (12)	kommentieren 🗬	Weitersagen 🌟	drucken 🖷	merken 🖺
-----------------	----------------	---------------	-----------	----------

Artikel

Artikel 8 / 98

Ein Reaktorblock des umstrittenen tschechischen Atomkraftwerks Temelin ist wegen einer Fehlfunktion unplanmäßig vom Netz genommen worden.

–Symbolbild: dpa

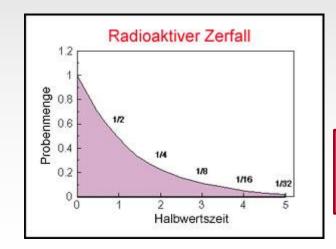
Ein Reaktorblock des umstrittenen tschechischen Atomkraftwerks
Temelin ist wegen einer Fehlfunktion unplanmäßig vom Netz
genommen worden. Grund seien erhöhte Vibrationen des
Turbogenerators des ersten Blocks, teilte die Betreibergesellschaft
CEZ am Montag mit. Die wahrscheinliche Ursache seien
Schwankungen der Außentemperatur.

Der Druckwasserreaktor soll nun vollständig heruntergefahren werden, um das Problem näher zu untersuchen. Wann der Block wieder ans Netz gehen könnte, ist derzeit noch unklar. In der Vergangenheit war es im AKW Temelin wiederholt zu Problemen mit Turbinenvibrationen

gekommen.

Nach Einschätzung der tschechischen Atomaufsichtsbehörde SUJB hat der Vorfall keine Auswirkungen auf die nukleare Sicherheit der Anlage. Die in Temelin verwendeten Turbinen sind eine Eigenentwicklung der Firma Skoda Power aus dem westböhmischen Pilsen (Plzen). Vor fünf Jahren waren die Rotorblätter erneuert und die Bruttoleistung von 1000 auf 1080 Megawatt erhöht worden.

Das Atomkraftwerk Temelin in Südböhmen ist nur 60 Kilometer von den Grenzen zu Bayern und Österreich entfernt. Umweltschützer kritisieren die Anlage seit Jahren als besonders störanfällig. In der Kritik steht dabei besonders die Kombination aus russischer Reaktor- und US-amerikanischer Leittechnik.



$$^{238}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{239}_{92}\text{U} \xrightarrow{\beta^{-}} ^{239}_{93}\text{Np} \xrightarrow{\beta^{-}} ^{239}_{94}\text{Pu}$$

$$^{232}_{90}\text{Th} + ^{1}_{0}\text{n} \rightarrow ^{233}_{90}\text{Th} \xrightarrow{\beta^{-}} ^{233}_{91}\text{Pa} \xrightarrow{\beta^{-}} ^{233}_{92}\text{U}$$

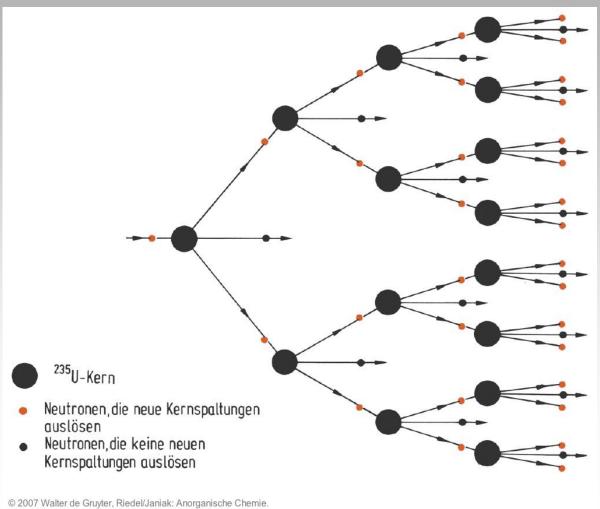
Kernfusion:

$${}_{3}^{6}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{1}^{3}\text{H} + {}_{2}^{4}\text{He}$$
 ${}_{1}^{2}\text{H} + {}_{1}^{3}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{0}^{1}\text{n}$
 ${}_{3}^{6}\text{Li} + {}_{1}^{2}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{2}\text{MeV}$

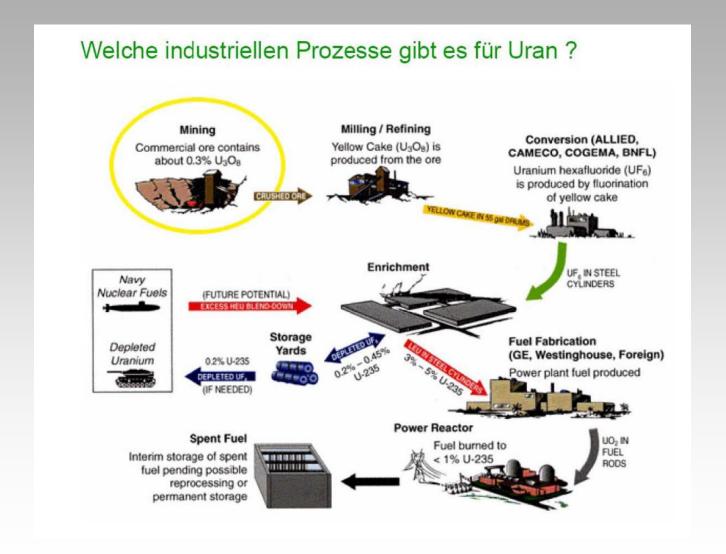
$${}^{16}_{8}O(\alpha,d){}^{18}_{9}F$$
 $t_{\frac{1}{2}} = 110 \text{ min}$

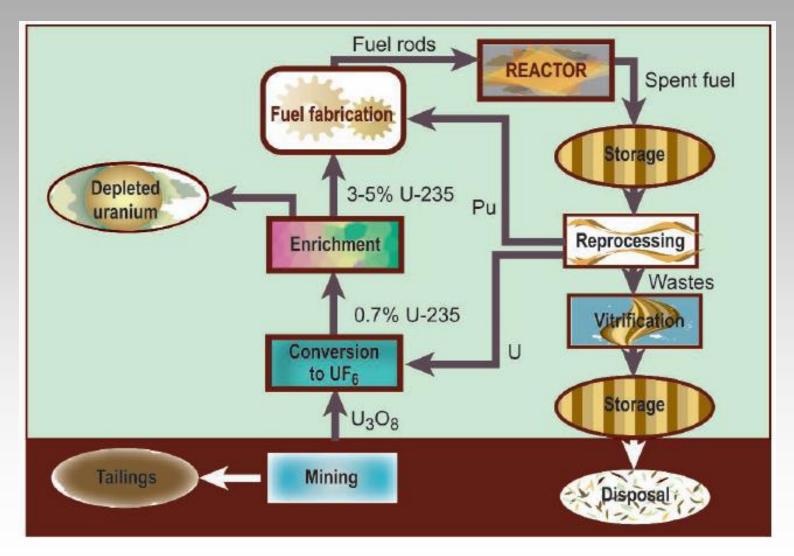
$$N(t) = N_0 \exp{-kt}$$

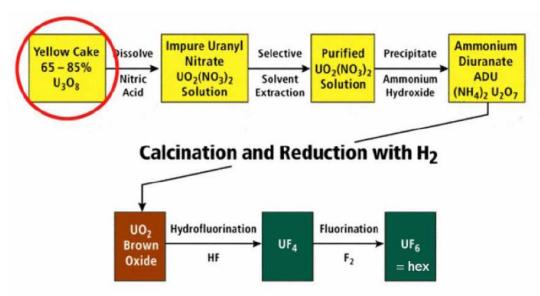
N = Anzahl der nicht zerfallenen Kerne


 N_0 = Anzahl der ursprünglich vorhandenen Kerne

t = Zeit


 $\mathbf{t_{1/2}}$ = Halbwertszeit


Kettenreaktion



Die Synthese von UF₆ ausgehend von ,yellow cake'

Es gibt zwei Methoden für die Darstellung von UF6:

(i) Naßverfahren

beide Verfahren laufen über

(ii) Trockenverfahren

die Zwischenstufen UO₂ und UF₄

http://web.ead.anl.gov/uranium/index.cfm

Die gemahlenen und gerösteten Uranerze werden durch Schwefelsäure sauer oder, bei stark Carbonat-haltigen Erzen, alkalisch mit Soda aufgeschlossen. Uran geht als sechswertiges Uranylsulfat UO₂SO₄ bzw. als [UO₂(CO₃)₃)]₄ in Lösung und wird von unlöslichen Verunreinigun-

gen befreit. Die Lösungen werden durch Leiten über Anionenaustauschharze aufgereinigt und anschließend mit NH $_3$ zum (NH $_4$) $_2$ U $_2$ O $_7$ (Ammoniumdiuranat, ADU) umgesetzt. Aufgrund der gelben Farbe dieser Verbindung hat sie den Namen *yellow cake* erhalten, jedoch ist der heutzutage gehandelte *yellow cake* schwarz-braun, da ADU anschließend zu U $_3$ O $_8$ calciniert wird. Der Urangehalt liegt nun bei ca. 80 %, während er im abgebauten Erz noch bei etwa 0.1 % lag. [23,32,33]

Der *yellow cake* U₃O₈ wird nun in konzentrierter Salpetersäure in Form von UO₂(NO₃)₂· 6 H₂O gelöst. Dieses wird mit Tributylphosphat (TBP) extrahiert, um noch bestehende metallische Verunreinigungen abzutrennen. Nach Eindampfen der Lösung zum UO₂(NO₃)₂ wird dieses thermisch zum UO₃ zersetzt. Die nachfolgende Reduktion mit H₂ resultiert in UO₂ (Gl. 1.3). Diese Verbindung wird in Form von gepressten Pellets in Brennstäben als Kernbrennstoff für die Kernspaltung verwendet. Da jedoch die allermeisten Reaktoren (Leichtwasserreaktoren) angereichertes Material hierzu benötigen, folgt zuerst die Umwandlung zu UF₆ in zwei Schritten: UO₂ wird mit HF zum UF₄ umgesetzt (Gl. 1.4), UF₄ wird nachfolgend mit F₂ zum UF₆ oxidiert (Gl. 1.5). Zwar ist es möglich UO₂ direkt mit elementarem Fluor zum UF₆ zu oxidieren, dies ist allerdings wegen des deutlich höheren F₂-Verbrauchs zu teuer. [23,32–34]

$$UO_2(NO_3)_2 \xrightarrow{300 \text{ °C}} UO_3 \xrightarrow{H_2} UO_2 + H_2O$$
 (1.3)

$$UO_2 + 4 HF \longrightarrow UF_4 + 2 H_2O$$
 (1.4)

$$UF_4 + F_2 \longrightarrow UF_6 \tag{1.5}$$

Schließlich wird das angereicherte UF₆ zum UO₂F₂ hydrolysiert (Gl. 1.6), welches wiederum durch Pyrolyse in Anwesenheit von H₂O und H₂ zum UO₂ für den Gebrauch als Kernbrennstoff dekonvertiert wird. Im Falle von abgereichertem UF₆ wird auf die Zugabe von H₂ verzichtet, woraus U₃O₈ resultiert (Gl. 1.7). Der größte Teil des abgereicherten UF₆ wird jedoch gar nicht dekonvertiert, sondern – insbesondere in den USA – direkt in großen Behältern bzw. Tanks eingelagert.^[27]

$$UF_6 + 2H_2O \longrightarrow UO_2F_2 + 4HF \tag{1.6}$$

$$UO_2F_2 + H_2O \implies \frac{1}{3}U_3O_8 + 2HF + \frac{1}{6}O_2$$
 (1.7)

Quelle: Oscar Ewert, Masterarbeit im Bereich Anorganische Chemie, 2025 Ludwig-Maximilians-Universität München

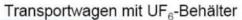
Das Trockenverfahren wurde von Allied Chemical Corp. eingeführt. Hierbei wird das Uran-Konzentrat pelletisiert und in einem Fließbettreaktor bei Temperaturen zwischen 540 und 650°C direkt mit Wasserstoff zu UO₂ reduziert. Die Hydrofluorierung zu UF₄ erfolgt in zwei hintereinander geschalteten Wirbelbettreaktoren. Nach der Fluorierung des gebildeten UF₄ in einer aus einem Flammenreaktor und einem Wirbelbettreaktor bestehenden Produktionseinheit wird das erzeugte UF₆ in einer zweistufigen Druckdestillation einem Reinigungsprozeß unterworfen. Dieser destillative Reinigungsprozeß ist notwendig, da – anders als bei den Naßverfahren – auf den vorhergehenden Stufen kein Reinigungsprozeß eingeschaltet ist.

Trockenverfahren zur Herstellung von UF₆ der Allied Chemical Corp.:

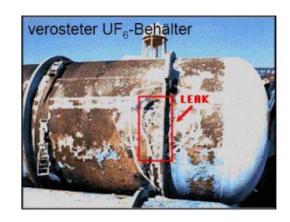
Uran-Konzentrat

Reduktion zu UO2

Hydrofluorierung zu UF₄


Fluorierung zu UF₆

UF₆-Reinigung durch fraktionierte Destillation



Die Lagerung von abgereichertes UF₆

UF₆-Behälter in Oak-Ridge, USA

Wozu dient die Darstellung von UF₆?

Für die Konvertierung von "yellow cake" zu UF₆ gibt es zwei Hauptgründe:

- (i) Reinigung des Urans
- (ii) Anreicherung des Urans

Verbindung	Schmelzpunkt / °C
Uran-Metall	1132.2
UF ₄	960
UCI ₄	590
UBr ₄	519
UI ₄	506
UF ₆	64
UO ₂	2827

UF₆ ist eine binäre Verbindung, und natürliches Fluor kommt ausschließlich als ¹⁹F-Isotop vor. Deswegen sind die kleine Unterschiede in die Isotop Gewichte ein Konsequenz der Uran-Anteil

Hauptsächlich werden drei Methoden für die ²³⁵U-Anreicherung angewendet:

- (i) Gaszentrifuge
- (ii) Gasdiffusion
- (iii) Elektromagnetisch Isotopen trennung

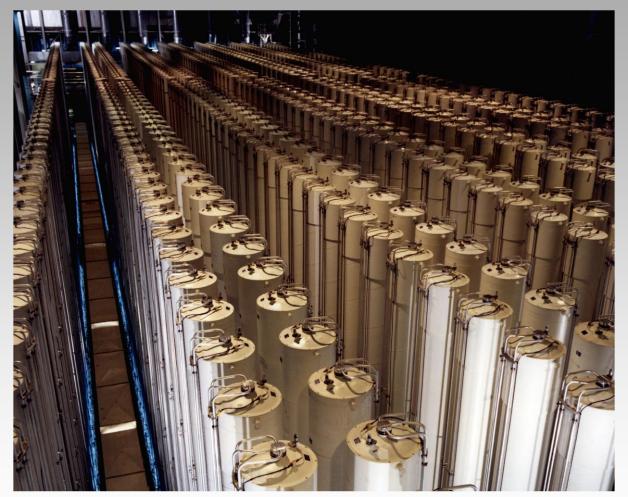
eingesetzt wird jeweils UF₆

Die ²³⁵U-Anreichungs-Methoden

Hauptsächlich werden drei Methoden für die ²³⁵U-Anreicherung verwendet:

(i) Gaszentrifuge

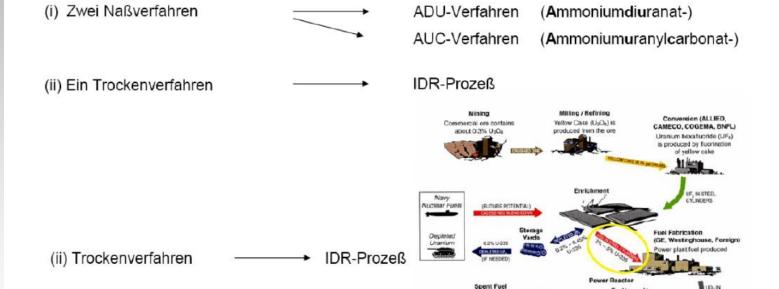
Diese Methode benutzt lange, mehrfach rotierende Rohre in denen es in der Randzone zu einer Anreichung des schweren Uran-Isotops ²³⁸U und zu einen Anreicherung des leichteren Isotops ²³⁵U in der Zentrifugenmitte kommt


(ii) Gasdiffusion

Bei der Gasdiffusion wird UF_6 durch eine Kaskade hintereinander geschalteter, feinporiger Membranen hindurchgepresst, wobei die unterschiedlichen Diffusionsgeschwindigkeiten der verschieden schweren Isotope ausgenutzt werden.

(iii) Elektromagnetische Isotopen trennung

Das Verfahren nutzt die Tatsache aus, dass geladene Teilchen in einem Magnetfeld abgelenkt werden Und das Ausmaß der Ablenkung massenabhängig ist.



In Reihe geschaltete Gaszentrifugen (sog. Gaszentrifugenkaskade) für die Anreicherung von Uran.

Die Rekonversion von UF₆ in Kernbrennstoffe

Zur Umwandlung von angereichertem UF₆ in sinterfähiges UO₂ gibt es drei Verfahren:

Gasförmiges UF_6 wird mit überhitztem Wasserdampf umgesetzt, wobei sich festes UO_2F_2 bildet. Das so gewonnene UO_2F_2 kann mit H_2 zu UO_2 reduziert werden.

Interim storage of spent

uel pending possible reprecessing or

IDR-Prozeß = Integrated-Dry-Route

Fuel burned to

Beim ADU-Prozeß wird das aus der Anreicherungsanlage kommende UF₆ zunächst verdampft und mit Wasser hydrolysiert:

$$UF_6 + 2H_2O \rightarrow UO_2F_2 + 4HF$$

Die UO_2F_2 -Lösung wird mit Ammoniak behandelt, wobei Ammoniumdiuranat — allerdings nicht der genauen stöchiometrischen Zusammensetzung — ausfällt:

$$2 UO_2F_2 + 8 HF + 14 NH_3 + 3 H_2O \rightarrow$$

$$(NH_4)_2 U_2O_7 + 12 NH_4F$$

Hydrolyse UF₆ zu UO₂F₂

Umsetzung mit NH₃ zu "(NH₄)₂U₂O₇"

Filtration, Extraktion, Umfällen zur Verminderung des Fluorid-Gehalts

Trocknen

trocknen

trocknen

trocknen

trocknen

trocknen

trocknen

Reduktive Zersetzung mit

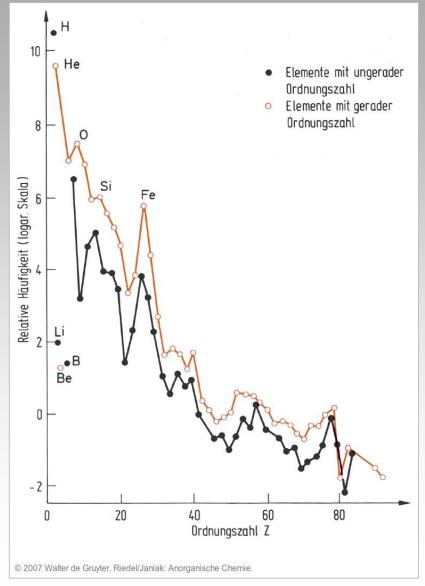
H₂/H₂O zu U₃O₈

Reduktion zu UO₂

schwache Reoxidation

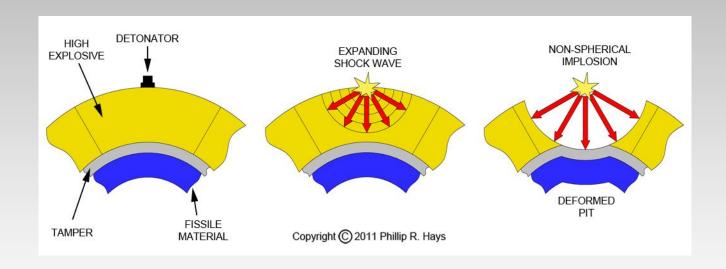
AUC-Prozeß liefert Fluorid-armes UO₂: UF₆ mit CO₂, NH₃, H₂O zu (NH₄)₄[UO₂(CO₃)₃] umgesetzt Filtration, Waschen \downarrow Zersetzung in H₂/H₂O zu UO₂ schwache Reoxidation

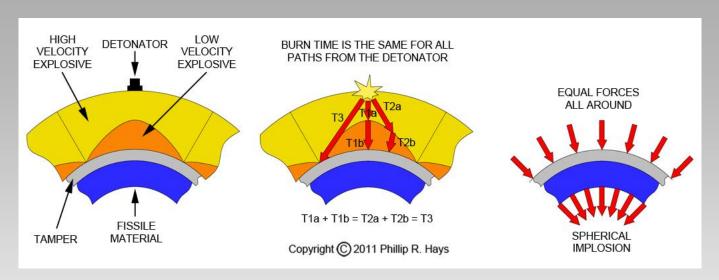
Ammoniumuranylcarbonat-(AUC-)Verfahren: Dieses Verfahren wurde in den sechziger Jahren in Deutschland entwickelt. Hierbei wird UF₆ mit CO₂ und Ammoniak gemeinsam in eine wäßrige, 70°C heiße Ammoniumcarbonat-Lösung eingeleitet, wobei Tetraammoniumtricarbonatodioxouranat (Ammoniumuranylcarbonat) ausfällt:

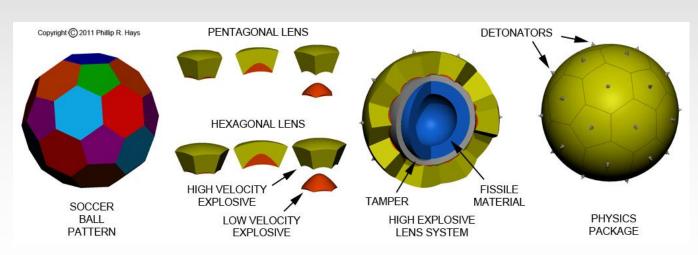

$$UF_6 + 5H_2O + 3CO_2 + 10NH_3 \rightarrow (NH_4)_4[UO_2(CO_3)_3] + 6NH_4F$$

IDR-Trockenverfahren:

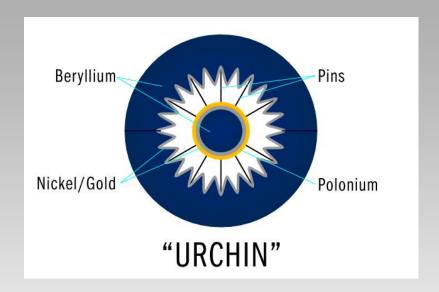
Umsetzung von UF6-Gas mit überhitztem H2O-Dampf zu UO2F2 (fest). Reduktion zu UO2


Dieser IDR-(Integrated-Dry-Route-)Prozeß besteht in der Umsetzung von gasförmigem UF₆ mit überhitztem Wasserdampf, wobei sich festes UO₂F₂ bildet, welches mit Wasserstoff zu UO₂ reduziert wird. Diese Umsetzung kann sowohl im Fließbettreaktor als auch im Drehrohrofen erfolgen, wobei letzteres vorteilhafter zu sein scheint.





For ²³⁵U the critical mass is 52 Kg and it has a diameter of 16.5 cm. For the plutonium isotope ²³⁹Pu the critical mass is 10 Kg and the diameter is 9.9 cm. You can see why plutonium is a more favorable bomb material - the weapon can be made smaller and lighter weight.



$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He
 $^{9}_{4}$ Be + $^{4}_{2}$ He $\rightarrow {^{13}_{6}}$ C} $\rightarrow ^{12}_{6}$ C + $^{1}_{0}$ n

It was a hollow sphere of beryllium, a mere two centimeters in diameter. The inner side of the sphere was machined with grooves, facing inwards. At the center of these grooves was another sphere of beryllium, centered by pins embedded in the outer shell. On both the inner grooves of the outer shell, and the outer surface of the inner sphere were coated with nickel and gold. Onto the nickel of the inner sphere was a thin film of virulently radioactive polonium. Polonium emits alpha particles; in the non-detonated state of the "Urchin," these would be absorbed harmlessly by the gold and nickel. But when the bomb came imploding in around it, the beryllium and polonium would be violently mixed, producing a well-known reaction (beryllium + an alpha particle = carbon + neutron) that produced the necessary neutrons.

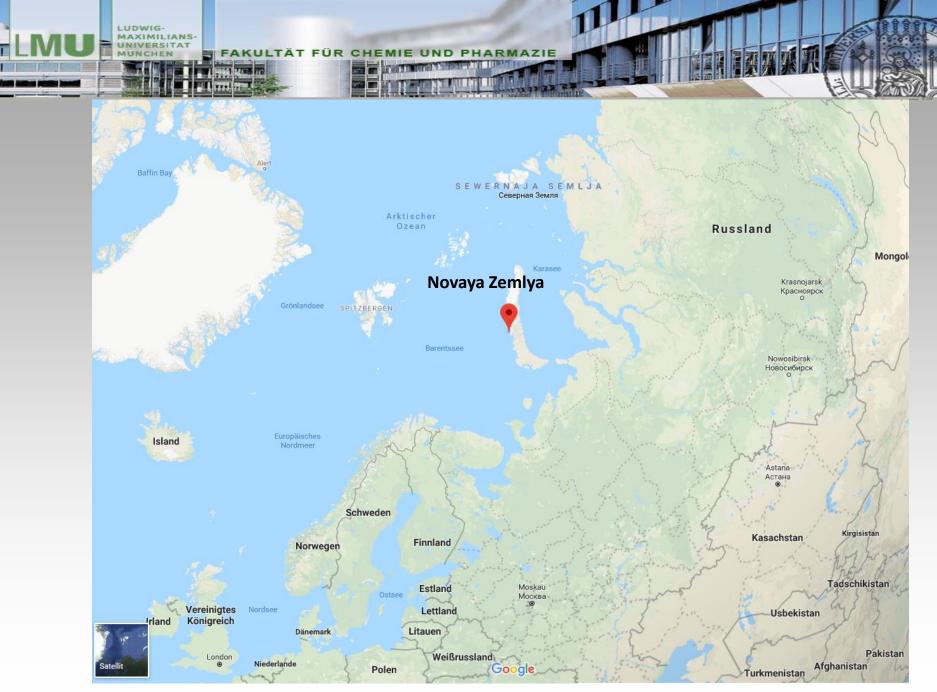
https://blog.nuclearsecrecy.com/2015/05/11/bohr-at-los-alamos/

Trinity bomb, July 16, 1945, 20,000 t TNT

Explosion of the most powerful thermonuclear bomb (tsar bomba) 58 megatons TNT

Weight 27,000 kg

Length 8 m

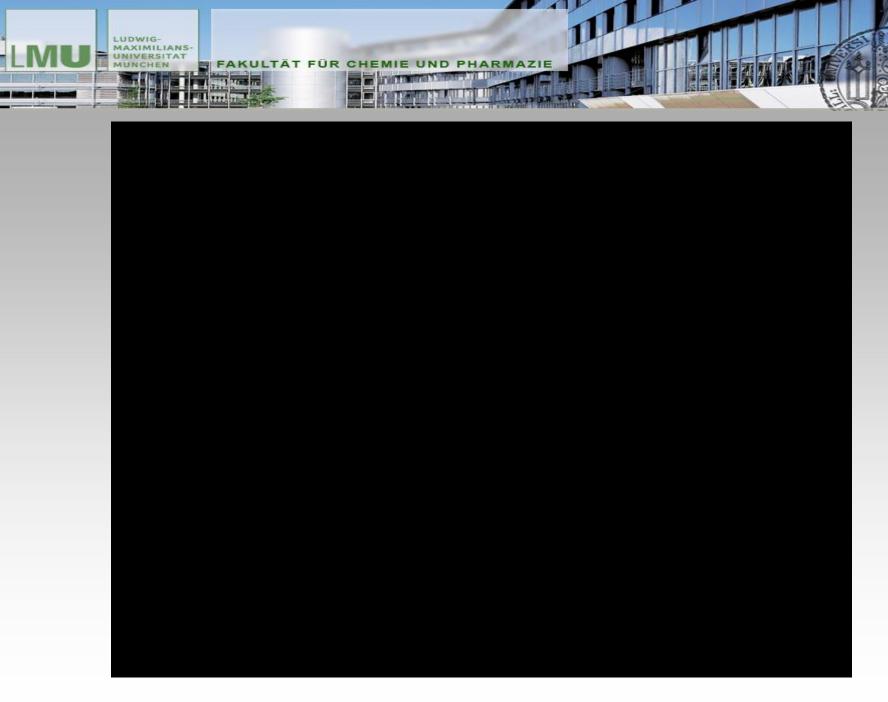

Diameter 2.1 m

Blast yield 50 megatons

of TNT

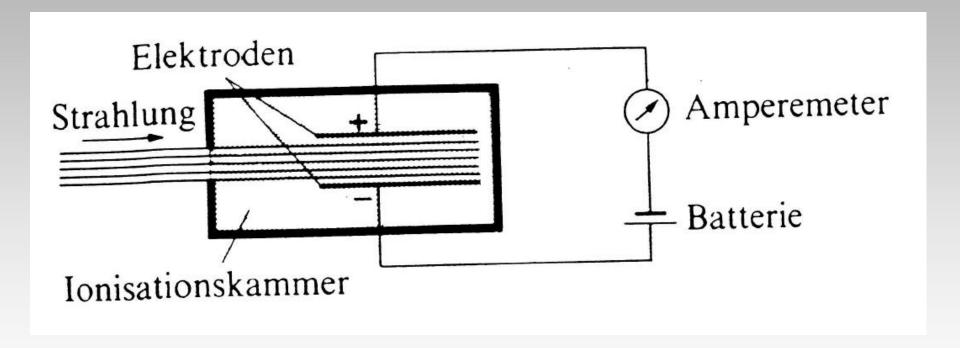
AN602

A Tsar Bomba-type casing on display at Sarov.

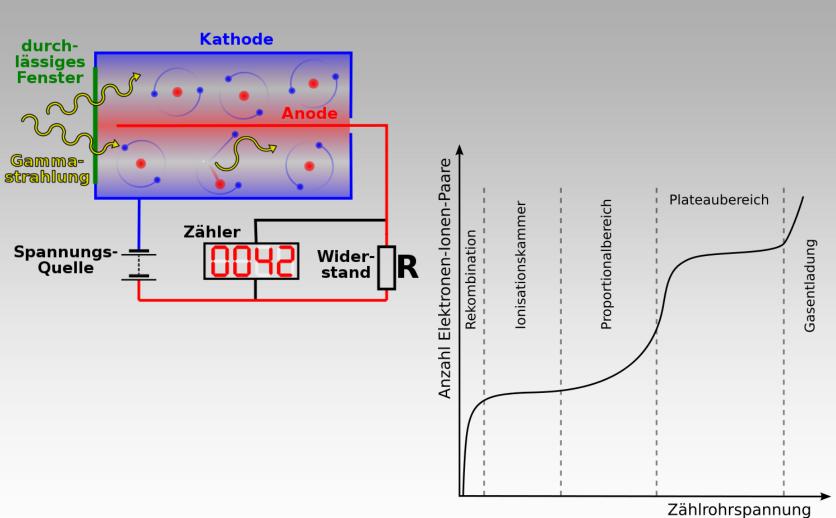


Anorganische Experimentalchemie (Tag 8)

The Tsar Bomba mushroom cloud seen from a distance of 161 km. The crown of the cloud is 56 km high at the time of the picture.


Nuclear reactions for the production of ¹⁸F

Reaction	Target	Threshold (MeV)	Energy of max cross section (MeV)
$^{19}F(\gamma,n)^{18}F$	Teflon	10.4	
²³ Na(γ,αn) ¹⁸ F	NaOH or NaSO ₄	21	
¹⁸ O(p,n) ¹⁸ F	H ₂ ¹⁸ O or O ₂	2.4	5
²⁰ Ne(d,α) ¹⁸ F	0.1%F ₂ in Ne	-	6
¹⁶ O(³ He,n) ¹⁸ Ne*	H ₂ O		8
¹⁶ O(α,d) ¹⁸ F	H ₂ O	18	
¹⁶ O(t,n) ¹⁸ F	Li ₂ CO ₃		3.3
23 Na(p, α x) 18 F	Na	18.7	


^{*) &}lt;sup>18</sup>Ne decays to ¹⁸F with a half-life of 1.67 s.

Nebelkammer

